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Abstract

The Adomian decomposition method (ADM) is a powerful
numerical technique for solving nonlinear partial differential
equations in an infinite series with easily computable components.
This paper presents the application of ADM to the Airy equation
with MATLAB, a powerful and versatile programming language
that has been widely used in scientific computing. We present a
step-by-step guide on how to solve the Airy equation with ADM and
MATLAB results shows the method is a precise and efficient
technique compared to existing exact solutions by matching in the
graph as we are going reviews.

Keywords: Airy differential equation, MATLAB, Adomia
decomposition method, Adomian polynomial

Introduction

George Adomian (1923-1996) developed a successful method to
solve nonlinear functional equations in the 1980s. The Adomian
decomposition technique is the name given to this procedure
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(ADM). The method is based on decomposing a nonlinear
functional equation solution into a sequence of functions. Each term
in the series is taken from a polynomial formed from an analytic
function's power series expansion. ADM provides the solution in an
infinite series with easily computable components [1],[2],[7].

The Airy equation is a second-order linear differential
equation describing the behavior of an oscillating beam in
an elastic medium. It was developed by John W. Airy in
1841 as an approximate model for the transverse
vibrations of stretched strings and bars. This equation has
played an important role in many physical applications
such as wave propagation in elastic media, water waves,
and the vibration of optical fibers. It is also used
extensively in mathematical physics and engineering
applications. The Airy functions, denoted by Ai(x), Bi(x),
are two linearly independent solutions of Airy equation
[5].[6].

Consider the linear ordinary differential equations in the form
Lu+Ru=g(x) Q)

Where u is an unknown function, the linear differential operator

L can be viewed as the highest-order derivative in the equation, R is

the remainder of the differential operator, and g(x) is an
inhomogeneous term.

Which is
n X X X
L= P => Li(#) = ff f(#) dxdx..dx (2)
00
Applying L~ to both sides of (1) glves
u(x) =6, + L tg(x) — L Ru (3)
Where
xz x3 %M
6o = u(0) + xu'(0) + ?u”(O) + 5“”’(0) + -4 —'u(”)(O),
dn+1. H n.
T dxntt
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The Adomian decomposition method admits the decomposition of
the unknown function wu in the form of an infinite series of
components [3],[4]

o

u@ =) w6

n=0
And
Z u, =6+ L 1g(x) — LR <z un>. (6)
n=0 n=0
Consequently
uy = 8 + L' g(x)
Uper = —L'Ru,, n=0. (7)

Now apply the ADM to the following airy equation:

w'(x) —axw(kx) =0 (8)
assuming the initial condition: w(0) = a,w'(0) = B
We can write it in the following form

Lw(x) = xw(x) 9
2
where L = W
Operating L~ on Both sides of above eq. To get
L Y(Lw) = L™ (xw) (10)
X X
d2
J 2 dx dx = L (xw) (11)
dx?
00
X
jw’(x) |g dx = L *(xw) (12)

0
[ = w dx = 17w,
0

where w'(0) a constant
w(x) —xp —a=L"1(xw) (13)
w(x) =a+xB + L 1(xw) (14)
The unidentified function w(x) can be written in the form of an
infinite series by ADM
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w(x) = Z W, (%) (15)

As we know that w,, 's are the Adomian polynomials and from
(15) this results in

Wy () + wy(x) + - = L1 <xZWn(x)> (16)
n=0

Where
wo(x) =a+ Bx (17)
Wi () = L (xwy(x)), n=0  (18)
Now
n=0 : wy(x) =L (xwy(x))
=L ax + px?)

=ff(ax+,8x2) dx dx

00
—ax3+ﬁx4 19
6 12 (19)

n=1, wy(x) =L (xwy(x))
ax® px’
=—+
180 504

(20)
This in turn gives

w(x) = wo(x) + wy(x) + wp(x) + -
. +ax3+ﬁx4‘+ax6+ﬁx7+
B A T RRIETT) 504

3 X6 x X7
=a<1+?+—+--- +,B<x+—+—+---> (21)

180 12 504

more specifically

3 x6
Wl(X):a<1+€+ﬁ+'“> (22)
xt  x7
= —_ _— ces 2
wy(x) ﬁ<x+12+504+ > (23)
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Are the basis form of system to solve the Airy's differential
equation.

Example 1
Consider the following equation:
y'(x) —xy(x) =0 , Where y(0) = y'(0) = 1 initial
conditions
We get by using ADM the solutions
3 x6
yi(x) =1 +€+@+"'
4 x7
Vo (x) = X+E+w+

Now by using MATLAB we get

exact Ai(x)
S ADM y1(x)
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Figure 1: Comparison of the Ai(x) e}act solution and the solution by

ADM.
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Figure 2: Comparison of the Bi(x) e>x<act solution and the solution by
ADM
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Figure 3: Comparison of the exact solution and the solution by ADM.

Results and Discussion

The Adomian Decomposition Method (ADM) is a powerful
method that treats the approximate solution of a nonlinear equation
as an infinite series that generally converges to the exact solution.
In this article, we propose an efficient numerical solution of the Airy
equations by Adomian decomposition in MATLAB. shows that the
proposed method is very efficient and accurate in solving the Airy
equations as we show in the graph matching between the solutions
each type of Airy function given, (Figures 1 and 2) [9],[10], Figure
3: Comparison of the exact solution and the solution by ADM.

Conclusion

In this paper, we have presented the Adomian
Decomposition Method (ADM) to solve the Airy equation
with MATLAB. We have shown that ADM is an effective
method to solve differential equations and can be used to
solve a wide range of problems in physics and
engineering. The results of our simulations show that
ADM provides accurate solutions to the Airy equation and
can be used to study the behavior of the Airy functions
Ai(x) and Bi(x) for different values of x. Our work
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contributes to the growing body of literature on ADM and
its applications in solving differential equations.

In conclusion, we have demonstrated that ADM is a
powerful tool for solving differential equations and can be
used to study a wide range of physical phenomena. Our
work provides a foundation for future research in this area
and highlights the potential of ADM as a tool for solving
complex problems in physics and engineering.
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